2024-05-19

Международная конференция "Наноуглерод и Алмаз" НиА-2024

Приглашение на Международную конференцию «Наноуглерод и Алмаз» (НиА’2024) — площадку обмена информацией о последних достижениях в области создания, исследования и применения углеродных наноструктур и алмазов. Конференция пройдёт 1 — 5 июля 2024 года в Санкт-Петербурге. В рамках конференции НиА’2024 пройдет однодневная (3 июля 2024 года) Школа-конференция молодых учёных «Наноуглерод и Алмаз. Получение, свойства, применения и методы диагностики». Рабочий язык Конференции и Школы — русский. Доклады и сообщения, включенные в программу конференции, будут распределены по следующим тематическим секциям: алмазы; углеродные нанотрубки; графен и его производные; углеродные наноструктуры и фуллерены; применения углеродных наноструктур и алмазов.

2024-05-13

Наблюдение водоворотов тока в графене при комнатной температуре

Журнал Science сообщает, что исследователям из ETH Zurich в группе Кристиана Дегена теперь впервые удалось напрямую обнаружить электронные вихри в графене, используя датчик магнитного поля высокого разрешения. Вихри образовывались в небольших круглых дисках, которые Деген и его коллеги прикрепили в процессе изготовления к проводящей графеновой полоске шириной в один микрометр. Диски имели диаметры от 1,2 до 3 микрометров. Теоретические расчеты показали, что электронные вихри должны образовываться в меньших, а не в больших дисках. Чтобы сделать вихри видимыми, физики измерили крошечные магнитные поля, создаваемые электронами, текущими внутри графена. Благодаря крошечным размерам алмазной иглы и небольшому расстоянию от графенового слоя — всего около 70 нанометров — учёные смогли сделать электронные токи видимыми с разрешением менее ста нанометров.

2024-04-16

Квантовая электроника показала, что заряд в двухслойном графене распространяется как свет

Международная исследовательская группа под руководством Гёттингенского университета экспериментально продемонстрировала, что электроны в встречающемся в природе двухслойном графене движутся как частицы без какой-либо массы, точно так же, как распространяется свет. Более того, они показали, что ток можно «включать» и выключать, что имеет потенциал для разработки крошечных энергоэффективных транзисторов — таких как выключатель света в доме, но на наноуровне. Это свойство быстро движущихся электронов было теоретически предсказано еще в 2009 году, но учёным потребовалось значительно улучшить качество образцов. Результаты были опубликованы в журнале Nature Communications.

2024-03-25

Квантовая интерференция повышает производительность одномолекулярных транзисторов

Разработан одномолекулярный транзистор, который использует квантовую интерференцию для управления потоком электронов. Транзистор, описанный в статье, опубликованной в журнале Nature Nanotechnology, открывает новые возможности использования квантовых эффектов в электронных устройствах. Проводящий канал транзистора представляет собой один порфирин цинка, молекулу, способную проводить электричество. Порфирин зажат между двумя графеновыми электродами, и когда к электродам прикладывается напряжение, поток электронов через молекулу можно контролировать с помощью квантовой интерференции. Новый транзистор стабилен и имеет очень высокий коэффициент включения/выключения. Подпороговое колебание транзистора 140 mV/dec, что лучше, чем у других аналогов и сравнимо с устройствами из углеродных нанотрубок.

2024-03-07

Характеристика и контроль инфракрасной фононной аномалии двухслойного графена в оптико-электрической силовой наноскопии

Корейский научно-исследовательский институт стандартов и науки (KRISS) разработал гибридный наномикроскоп, способный одновременно измерять различные свойства наноматериалов. Прибор сочетает в себе функции атомно-силовой микроскопии, фотоиндуцированной силовой микроскопии и электростатической силовой микроскопии. Вместо использования линз для измерения образца применяется тонкий функциональный зонд, что позволяет одновременно измерять оптические и электрические свойства, а также форму наноматериалов за одно сканирование. Группа метрологии свойств материалов KRISS разъяснила принципы уникальной реакции поглощения инфракрасного излучения, наблюдаемой в двухслойном графене с помощью гибридного наномикроскопа. Исследователи KRISS подтвердили, что это явление вызвано дисбалансом зарядов между двумя слоями графена. Они также экспериментально продемонстрировали способность контролировать поглощение инфракрасного излучения, намеренно вызывая и регулируя дисбаланс зарядов.

2024-02-21

Дробный квантовый аномальный эффект Холла в многослойном графене

Был зафиксирован эффект дробного заряда в пятислойном графене толщиной в атом, который образуется из графита и обычного карандашного грифеля. Обнаружено, что когда пять листов графена сложены друг на друга, как ступеньки на лестнице, полученная структура по своей сути обеспечивает правильные условия для прохождения электронов в виде долей их общего заряда, без необходимости какого-либо внешнего магнитного поля. Оказалось, что электроны могли бы взаимодействовать друг с другом еще сильнее, если бы пятислойная структура была выровнена с гексагональным нитридом бора (hBN) — материалом, который имеет атомную структуру, аналогичную структуре графена, но с немного другими размерами.

2023-12-04

Сильные переходные магнитные поля, индуцированные ТГц-управляемыми плазмонами в графеновых дисках

Физики из Университета Дуйсбург-Эссен и их партнеры обнаружили, что крошечные листы графена могут становиться электромагнитами под действием инфракрасного излучения. Исследование опубликовано в журнале Nature Communications. Образец невидим для человеческого глаза: на поверхности размером 2х2 миллиметра расположены крошечные диски, каждый диаметром 1,2 микрометра, что составляет одну сотую ширины человеческого волоса. Они состоят из двух слоев графена — которые лежат друг на друге как блины. Их электроны свободно движутся в материале и могут подвергаться воздействию электромагнитных полей. Учёные использовали терагерцовое (ТГц) излучение с круговой поляризацией в инфракрасном диапазоне для возбуждения электронов. В ходе эксперимента генерировались магнитные поля величиной 0,5 Тесла; это примерно в 10 000 раз превышает магнитное поле Земли.

2023-10-26

Измерение механических напряжений и деформаций в электродах суперконденсаторов на основе графена

Исследователи Техасского университета A&M обнаружили, что при зарядке суперконденсатора он накапливает энергию и реагирует растяжением и расширением. Это открытие можно использовать для разработки новых материалов для гибкой электроники или других устройств, которые должны быть одновременно прочными и эффективно хранить энергию. Исследование направлено на разработку устройств хранения энергии, которые смогут выдерживать структурные нагрузки и в конечном итоге заменить пластики, армированные углеродным волокном, которые действуют как структурные панели в самолетах, тем самым повышая энергоэффективность.

2023-10-11

Открыт управляемый нелинейный эффект Холла в скрученном двухслойном графене

Группа международных исследователей под руководством Гонконгского университета (HKU) и Университета науки и технологий (HKUST) сделала важное открытие в области квантовых материалов, открыв контролируемый нелинейный эффект Холла в скрученном двухслойном графене. Результаты, опубликованные в Physical Review Letters, проливают новый свет на уникальные свойства двумерных квантово-муаровых материалов и открывают перспективы для широкого спектра применений в таких отраслях, как новые материалы и квантовая информация, для достижения терагерцового обнаружения со сверхвысокой чувствительностью при комнатной температуре.

2023-06-23

Поток воды на углеродной поверхности регулируется квантовым трением

Вода и углерод образуют квантовую пару: поток воды на поверхности углерода управляется необычным явлением, получившим название квантового трения. Новая работа, опубликованная в журнале Nature Nanotechnology, экспериментально демонстрирует это явление, предсказанное в предыдущем теоретическом исследовании.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com